Source code for spreg.error_sp_het_regimes

'''
Spatial Error with Heteroskedasticity and Regimes family of models
'''
__author__ = "Luc Anselin luc.anselin@asu.edu, Pedro V. Amaral pedro.amaral@asu.edu"

import numpy as np
import multiprocessing as mp
from . import user_output as USER
from . import summary_output as SUMMARY
from . import utils as UTILS
from . import regimes as REGI
from .ols import BaseOLS
from .twosls import BaseTSLS
from .error_sp_het import BaseGM_Error_Het, BaseGM_Endog_Error_Het, get_psi_sigma, get_vc_het, get_vm_het, get_P_hat, get_a1a2, get_vc_het_tsls, get_Omega_GS2SLS
from .utils import RegressionPropsY, spdot, set_endog, sphstack, set_warn, sp_att
from scipy import sparse as SP
from libpysal.weights.spatial_lag import lag_spatial
from platform import system


[docs]class GM_Error_Het_Regimes(RegressionPropsY, REGI.Regimes_Frame): """ GMM method for a spatial error model with heteroskedasticity and regimes; based on Arraiz et al :cite:`Arraiz2010`, following Anselin :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. w : pysal W object Spatial weights object constant_regi: string Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes * 'many': a vector of ones is appended to x and considered different per regime (default) cols2regi : list, 'all' Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime. regime_err_sep: boolean If True, a separate regression is run for each regime. regime_lag_sep: boolean Always False, kept for consistency, ignored. max_iter : int Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from Arraiz et al. vm : boolean If True, include variance-covariance matrix in summary results cores : boolean Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms. name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regime variable for use in the output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable pr2 : float Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) std_err : array 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regime variable for use in the output title : string Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. constant_regi: string Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes * 'many': a vector of ones is appended to x and considered different per regime cols2regi : list, 'all' Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime. regime_err_sep: boolean If True, a separate regression is run for each regime. kr : int Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable) kf : int Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate nr : int Number of different regimes in the 'regimes' list multi : dictionary Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal >>> from libpysal.examples import load_example Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> nat = load_example('Natregimes') >>> db = libpysal.io.open(nat.get_path('natregimes.dbf'),'r') Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y_var = 'HR90' >>> y = np.array([db.by_col(y_var)]).reshape(3085,1) Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as x_var = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> x_var = ['PS90','UE90'] >>> x = np.array([db.by_col(name) for name in x_var]).T The different regimes in this data are given according to the North and South dummy (SOUTH). >>> r_var = 'SOUTH' >>> regimes = db.by_col(r_var) Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``NAT.shp``. >>> w = libpysal.weights.Rook.from_shapefile(nat.get_path("natregimes.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Error_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. Alternatively, we can have a summary of the output by typing: model.summary >>> print(reg.name_x) ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda'] >>> np.around(reg.betas, decimals=6) array([[0.009121], [0.812973], [0.549355], [5.00279 ], [1.200929], [0.614681], [0.429277]]) >>> np.around(reg.std_err, decimals=6) array([0.355844, 0.221743, 0.059276, 0.686764, 0.35843 , 0.092788, 0.02524 ]) """
[docs] def __init__(self, y, x, regimes, w, max_iter=1, epsilon=0.00001, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) self.constant_regi = constant_regi self.cols2regi = cols2regi self.regime_err_sep = regime_err_sep self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_w = USER.set_name_w(name_w, w) self.name_regimes = USER.set_name_ds(name_regimes) self.n, self.step1c = n, step1c self.y = y x_constant,name_x,warn = USER.check_constant(x,name_x,just_rem=True) set_warn(self,warn) name_x = USER.set_name_x(name_x, x_constant, constant=True) self.name_x_r = name_x cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x_constant) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x_constant.shape[1]) self.regime_err_sep = regime_err_sep if regime_err_sep == True: if set(cols2regi) == set([True]): self._error_regimes_multi(y, x_constant, regimes, w, cores, max_iter, epsilon, step1c, cols2regi, vm, name_x) else: raise Exception("All coefficients must vary accross regimes if regime_err_sep = True.") else: x_constant = sphstack(np.ones((x_constant.shape[0], 1)), x_constant) name_x = USER.set_name_x(name_x, x_constant) self.x, self.name_x = REGI.Regimes_Frame.__init__(self, x_constant, regimes, constant_regi=None, cols2regi=cols2regi, names=name_x) ols = BaseOLS(y=y, x=self.x) self.k = ols.x.shape[1] wA1 = UTILS.get_A1_het(w.sparse) # 1b. GMM --> \tilde{\lambda1} moments = UTILS._moments2eqs(wA1, w.sparse, ols.u) lambda1 = UTILS.optim_moments(moments) if step1c: # 1c. GMM --> \tilde{\lambda2} sigma = get_psi_sigma(w.sparse, ols.u, lambda1) vc1 = get_vc_het(w.sparse, wA1, sigma) lambda2 = UTILS.optim_moments(moments, vc1) else: lambda2 = lambda1 lambda_old = lambda2 self.iteration, eps = 0, 1 while self.iteration < max_iter and eps > epsilon: # 2a. reg -->\hat{betas} xs = UTILS.get_spFilter(w, lambda_old, x_constant) ys = UTILS.get_spFilter(w, lambda_old, y) xs = REGI.Regimes_Frame.__init__(self, xs, regimes, constant_regi=None, cols2regi=cols2regi)[0] ols_s = BaseOLS(y=ys, x=xs) self.predy = spdot(self.x, ols_s.betas) self.u = self.y - self.predy # 2b. GMM --> \hat{\lambda} sigma_i = get_psi_sigma(w.sparse, self.u, lambda_old) vc_i = get_vc_het(w.sparse, wA1, sigma_i) moments_i = UTILS._moments2eqs(wA1, w.sparse, self.u) lambda3 = UTILS.optim_moments(moments_i, vc_i) eps = abs(lambda3 - lambda_old) lambda_old = lambda3 self.iteration += 1 self.iter_stop = UTILS.iter_msg(self.iteration, max_iter) sigma = get_psi_sigma(w.sparse, self.u, lambda3) vc3 = get_vc_het(w.sparse, wA1, sigma) self.vm = get_vm_het(moments_i[0], lambda3, self, w.sparse, vc3) self.betas = np.vstack((ols_s.betas, lambda3)) self.e_filtered = self.u - lambda3 * lag_spatial(w, self.u) self.title = "SPATIALLY WEIGHTED LEAST SQUARES (HET) - REGIMES" self.name_x.append('lambda') self.kf += 1 self.chow = REGI.Chow(self) self._cache = {} SUMMARY.GM_Error_Het(reg=self, w=w, vm=vm, regimes=True)
def _error_regimes_multi(self, y, x, regimes, w, cores, max_iter, epsilon, step1c, cols2regi, vm, name_x): regi_ids = dict( (r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) results_p = {} """ for r in self.regimes_set: if system() == 'Windows': is_win = True results_p[r] = _work_error(*(y,x,regi_ids,r,w,max_iter,epsilon,step1c,self.name_ds,self.name_y,name_x+['lambda'],self.name_w,self.name_regimes)) else: pool = mp.Pool(cores) results_p[r] = pool.apply_async(_work_error,args=(y,x,regi_ids,r,w,max_iter,epsilon,step1c,self.name_ds,self.name_y,name_x+['lambda'],self.name_w,self.name_regimes, )) is_win = False """ x_constant,name_x = REGI.check_const_regi(self,x,name_x,regi_ids) self.name_x_r = name_x for r in self.regimes_set: if cores: pool = mp.Pool(None) results_p[r] = pool.apply_async(_work_error, args=( y, x_constant, regi_ids, r, w, max_iter, epsilon, step1c, self.name_ds, self.name_y, name_x + ['lambda'], self.name_w, self.name_regimes, )) else: results_p[r] = _work_error(*(y, x_constant, regi_ids, r, w, max_iter, epsilon, step1c, self.name_ds, self.name_y, name_x + ['lambda'], self.name_w, self.name_regimes)) self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.vm = np.zeros((self.nr * self.kr, self.nr * self.kr), float) self.betas = np.zeros((self.nr * self.kr, 1), float) self.u = np.zeros((self.n, 1), float) self.predy = np.zeros((self.n, 1), float) self.e_filtered = np.zeros((self.n, 1), float) """ if not is_win: pool.close() pool.join() """ if cores: pool.close() pool.join() results = {} self.name_y, self.name_x = [], [] counter = 0 for r in self.regimes_set: """ if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() """ if not cores: results[r] = results_p[r] else: results[r] = results_p[r].get() self.vm[(counter * self.kr):((counter + 1) * self.kr), (counter * self.kr):((counter + 1) * self.kr)] = results[r].vm self.betas[ (counter * self.kr):((counter + 1) * self.kr), ] = results[r].betas self.u[regi_ids[r], ] = results[r].u self.predy[regi_ids[r], ] = results[r].predy self.e_filtered[regi_ids[r], ] = results[r].e_filtered self.name_y += results[r].name_y self.name_x += results[r].name_x counter += 1 self.chow = REGI.Chow(self) self.multi = results SUMMARY.GM_Error_Het_multi( reg=self, multireg=self.multi, vm=vm, regimes=True)
[docs]class GM_Endog_Error_Het_Regimes(RegressionPropsY, REGI.Regimes_Frame): """ GMM method for a spatial error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al :cite:`Arraiz2010`, following Anselin :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. w : pysal W object Spatial weights object constant_regi: string Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes. * 'many': a vector of ones is appended to x and considered different per regime (default). cols2regi : list, 'all' Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime. regime_err_sep : boolean If True, a separate regression is run for each regime. regime_lag_sep : boolean Always False, kept for consistency, ignored. max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. vm : boolean If True, include variance-covariance matrix in summary results cores : boolean Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms. name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regime variable for use in the output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant). Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) yend : array Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z : array nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) h : array nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) std_err : array 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regimes variable for use in output title : string Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. constant_regi : string Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes. * 'many': a vector of ones is appended to x and considered different per regime (default). cols2regi : list, 'all' Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime. regime_err_sep : boolean If True, a separate regression is run for each regime. kr : int Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable) kf : int Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate nr : int Number of different regimes in the 'regimes' list multi : dictionary Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal >>> from libpysal.examples import load_example Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> nat = load_example('Natregimes') >>> db = libpysal.io.open(nat.get_path("natregimes.dbf"),'r') Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y_var = 'HR90' >>> y = np.array([db.by_col(y_var)]).reshape(3085,1) Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as x_var = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> x_var = ['PS90','UE90'] >>> x = np.array([db.by_col(name) for name in x_var]).T For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty): >>> yd_var = ['RD90'] >>> yend = np.array([db.by_col(name) for name in yd_var]).T >>> q_var = ['FP89'] >>> q = np.array([db.by_col(name) for name in q_var]).T The different regimes in this data are given according to the North and South dummy (SOUTH). >>> r_var = 'SOUTH' >>> regimes = db.by_col(r_var) Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``NAT.shp``. >>> w = libpysal.weights.Rook.from_shapefile(nat.get_path("natregimes.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix Alternatively, we can have a summary of the output by typing: model.summary >>> print(reg.name_z) ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda'] >>> print(np.around(reg.betas,4)) [[ 3.5944] [ 1.065 ] [ 0.1587] [ 9.184 ] [ 1.8784] [-0.2466] [ 2.4617] [ 3.5756] [ 0.2908]] >>> print(np.around(np.sqrt(reg.vm.diagonal()),4)) [0.5043 0.2132 0.0581 0.6681 0.3504 0.0999 0.3686 0.3402 0.028 ] """
[docs] def __init__(self, y, x, yend, q, regimes, w, max_iter=1, epsilon=0.00001, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False): n = USER.check_arrays(y, x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_ds = USER.set_name_ds(name_ds) self.name_regimes = USER.set_name_ds(name_regimes) self.name_w = USER.set_name_w(name_w, w) self.n, self.step1c = n, step1c self.y = y x_constant,name_x,warn = USER.check_constant(x,name_x,just_rem=True) set_warn(self,warn) name_x = USER.set_name_x(name_x, x_constant, constant=True) if summ: name_yend = USER.set_name_yend(name_yend, yend) self.name_y = USER.set_name_y(name_y) name_q = USER.set_name_q(name_q, q) self.name_x_r = USER.set_name_x(name_x, x_constant) + name_yend cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x_constant, yend=yend) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x_constant.shape[1]) self.regime_err_sep = regime_err_sep if regime_err_sep == True: if set(cols2regi) == set([True]): self._endog_error_regimes_multi(y, x_constant, regimes, w, yend, q, cores, max_iter, epsilon, step1c, inv_method, cols2regi, vm, name_x, name_yend, name_q, add_lag) else: raise Exception("All coefficients must vary accross regimes if regime_err_sep = True.") else: x_constant = sphstack(np.ones((x_constant.shape[0], 1)), x_constant) name_x = USER.set_name_x(name_x, x_constant) q, name_q = REGI.Regimes_Frame.__init__(self, q, regimes, constant_regi=None, cols2regi='all', names=name_q) x, name_x = REGI.Regimes_Frame.__init__(self, x_constant, regimes, constant_regi=None, cols2regi=cols2regi, names=name_x) yend2, name_yend = REGI.Regimes_Frame.__init__(self, yend, regimes, constant_regi=None, cols2regi=cols2regi, yend=True, names=name_yend) # 1a. S2SLS --> \tilde{\delta} tsls = BaseTSLS(y=y, x=x, yend=yend2, q=q) self.k = tsls.z.shape[1] self.x = tsls.x self.yend, self.z, self.h = tsls.yend, tsls.z, tsls.h wA1 = UTILS.get_A1_het(w.sparse) # 1b. GMM --> \tilde{\lambda1} moments = UTILS._moments2eqs(wA1, w.sparse, tsls.u) lambda1 = UTILS.optim_moments(moments) if step1c: # 1c. GMM --> \tilde{\lambda2} self.u = tsls.u zs = UTILS.get_spFilter(w, lambda1, self.z) vc1 = get_vc_het_tsls( w.sparse, wA1, self, lambda1, tsls.pfora1a2, zs, inv_method, filt=False) lambda2 = UTILS.optim_moments(moments, vc1) else: lambda2 = lambda1 lambda_old = lambda2 self.iteration, eps = 0, 1 while self.iteration < max_iter and eps > epsilon: # 2a. reg -->\hat{betas} xs = UTILS.get_spFilter(w, lambda1, x_constant) xs = REGI.Regimes_Frame.__init__(self, xs, regimes, constant_regi=None, cols2regi=cols2regi)[0] ys = UTILS.get_spFilter(w, lambda1, y) yend_s = UTILS.get_spFilter(w, lambda1, yend) yend_s = REGI.Regimes_Frame.__init__(self, yend_s, regimes, constant_regi=None, cols2regi=cols2regi, yend=True)[0] tsls_s = BaseTSLS(ys, xs, yend_s, h=tsls.h) self.predy = spdot(self.z, tsls_s.betas) self.u = self.y - self.predy # 2b. GMM --> \hat{\lambda} vc2 = get_vc_het_tsls( w.sparse, wA1, self, lambda_old, tsls_s.pfora1a2, sphstack(xs, yend_s), inv_method) moments_i = UTILS._moments2eqs(wA1, w.sparse, self.u) lambda3 = UTILS.optim_moments(moments_i, vc2) eps = abs(lambda3 - lambda_old) lambda_old = lambda3 self.iteration += 1 self.iter_stop = UTILS.iter_msg(self.iteration, max_iter) zs = UTILS.get_spFilter(w, lambda3, self.z) P = get_P_hat(self, tsls.hthi, zs) vc3 = get_vc_het_tsls( w.sparse, wA1, self, lambda3, P, zs, inv_method, save_a1a2=True) self.vm = get_Omega_GS2SLS( w.sparse, lambda3, self, moments_i[0], vc3, P) self.betas = np.vstack((tsls_s.betas, lambda3)) self.e_filtered = self.u - lambda3 * lag_spatial(w, self.u) self.name_x = USER.set_name_x(name_x, x, constant=True) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') # listing lambda last self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.kf += 1 self.chow = REGI.Chow(self) self._cache = {} if summ: self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET) - REGIMES" SUMMARY.GM_Endog_Error_Het(reg=self, w=w, vm=vm, regimes=True)
def _endog_error_regimes_multi(self, y, x, regimes, w, yend, q, cores, max_iter, epsilon, step1c, inv_method, cols2regi, vm, name_x, name_yend, name_q, add_lag): regi_ids = dict( (r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) if add_lag != False: self.cols2regi += [True] cols2regi += [True] self.predy_e = np.zeros((self.n, 1), float) self.e_pred = np.zeros((self.n, 1), float) results_p = {} """ for r in self.regimes_set: if system() == 'Windows': is_win = True results_p[r] = _work_endog_error(*(y,x,yend,q,regi_ids,r,w,max_iter,epsilon,step1c,inv_method,self.name_ds,self.name_y,name_x,name_yend,name_q,self.name_w,self.name_regimes,add_lag)) else: pool = mp.Pool(cores) results_p[r] = pool.apply_async(_work_endog_error,args=(y,x,yend,q,regi_ids,r,w,max_iter,epsilon,step1c,inv_method,self.name_ds,self.name_y,name_x,name_yend,name_q,self.name_w,self.name_regimes,add_lag, )) is_win = False """ x_constant,name_x = REGI.check_const_regi(self,x,name_x,regi_ids) self.name_x_r = name_x + name_yend for r in self.regimes_set: if cores: pool = mp.Pool(None) results_p[r] = pool.apply_async(_work_endog_error, args=(y, x_constant, yend, q, regi_ids, r, w, max_iter, epsilon, step1c, inv_method, self.name_ds, self.name_y, name_x, name_yend, name_q, self.name_w, self.name_regimes, add_lag, )) else: results_p[r] = _work_endog_error(*(y, x_constant, yend, q, regi_ids, r, w, max_iter, epsilon, step1c, inv_method, self.name_ds, self.name_y, name_x, name_yend, name_q, self.name_w, self.name_regimes, add_lag)) self.kryd, self.kf = 0, 0 self.kr = len(cols2regi) + 1 self.nr = len(self.regimes_set) self.vm = np.zeros((self.nr * self.kr, self.nr * self.kr), float) self.betas = np.zeros((self.nr * self.kr, 1), float) self.u = np.zeros((self.n, 1), float) self.predy = np.zeros((self.n, 1), float) self.e_filtered = np.zeros((self.n, 1), float) """ if not is_win: pool.close() pool.join() """ if cores: pool.close() pool.join() results = {} self.name_y, self.name_x, self.name_yend, self.name_q, self.name_z, self.name_h = [ ], [], [], [], [], [] counter = 0 for r in self.regimes_set: """ if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() """ if not cores: results[r] = results_p[r] else: results[r] = results_p[r].get() self.vm[(counter * self.kr):((counter + 1) * self.kr), (counter * self.kr):((counter + 1) * self.kr)] = results[r].vm self.betas[ (counter * self.kr):((counter + 1) * self.kr), ] = results[r].betas self.u[regi_ids[r], ] = results[r].u self.predy[regi_ids[r], ] = results[r].predy self.e_filtered[regi_ids[r], ] = results[r].e_filtered self.name_y += results[r].name_y self.name_x += results[r].name_x self.name_yend += results[r].name_yend self.name_q += results[r].name_q self.name_z += results[r].name_z self.name_h += results[r].name_h if add_lag != False: self.predy_e[regi_ids[r], ] = results[r].predy_e self.e_pred[regi_ids[r], ] = results[r].e_pred counter += 1 self.chow = REGI.Chow(self) self.multi = results if add_lag != False: SUMMARY.GM_Combo_Het_multi( reg=self, multireg=self.multi, vm=vm, regimes=True) else: SUMMARY.GM_Endog_Error_Het_multi( reg=self, multireg=self.multi, vm=vm, regimes=True)
[docs]class GM_Combo_Het_Regimes(GM_Endog_Error_Het_Regimes): """ GMM method for a spatial lag and error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al :cite:`Arraiz2010`, following Anselin :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. w : pysal W object Spatial weights object (always needed) constant_regi: string Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes. * 'many': a vector of ones is appended to x and considered different per regime (default). cols2regi : list, 'all' Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime. regime_err_sep : boolean If True, a separate regression is run for each regime. regime_lag_sep : boolean If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes. w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. vm : boolean If True, include variance-covariance matrix in summary results cores : boolean Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms. name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regime variable for use in the output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals e_pred : array nx1 array of residuals (using reduced form) predy : array nx1 array of predicted y values predy_e : array nx1 array of predicted y values (using reduced form) n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) yend : array Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z : array nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) h : array nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) std_err : array 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output name_regimes : string Name of regimes variable for use in output title : string Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) regimes : list List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'. constant_regi : string Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values: * 'one': a vector of ones is appended to x and held constant across regimes. * 'many': a vector of ones is appended to x and considered different per regime (default). cols2regi : list, 'all' Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime. regime_err_sep: boolean If True, a separate regression is run for each regime. regime_lag_sep: boolean If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes. kr : int Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable) kf : int Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate nr : int Number of different regimes in the 'regimes' list multi : dictionary Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal >>> from libpysal.examples import load_example Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> nat = load_example('Natregimes') >>> db = libpysal.io.open(nat.get_path("natregimes.dbf"),'r') Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y_var = 'HR90' >>> y = np.array([db.by_col(y_var)]).reshape(3085,1) Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as x_var = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> x_var = ['PS90','UE90'] >>> x = np.array([db.by_col(name) for name in x_var]).T The different regimes in this data are given according to the North and South dummy (SOUTH). >>> r_var = 'SOUTH' >>> regimes = db.by_col(r_var) Since we want to run a spatial combo model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``NAT.shp``. >>> w = libpysal.weights.Rook.from_shapefile(nat.get_path("natregimes.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. Example only with spatial lag The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas: >>> reg = GM_Combo_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT') >>> print(reg.name_z) ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda'] >>> print(np.around(reg.betas,4)) [[ 1.4613] [ 0.9587] [ 0.5658] [ 9.1157] [ 1.1324] [ 0.6518] [-0.4587] [ 0.7174]] This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'. >>> yd_var = ['RD90'] >>> yd = np.array([db.by_col(name) for name in yd_var]).T >>> q_var = ['FP89'] >>> q = np.array([db.by_col(name) for name in q_var]).T And then we can run and explore the model analogously to the previous combo: >>> reg = GM_Combo_Het_Regimes(y, x, regimes, yd, q, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT') >>> print(reg.name_z) ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda'] >>> print(reg.betas) [[ 3.41936197] [ 1.04071048] [ 0.16747219] [ 8.85820215] [ 1.847382 ] [-0.24545394] [ 2.43189808] [ 3.61328423] [ 0.03132164] [ 0.29544224]] >>> print(np.sqrt(reg.vm.diagonal())) [0.53103804 0.20835827 0.05755679 1.00496234 0.34332131 0.10259525 0.3454436 0.37932794 0.07611667 0.07067059] >>> print('lambda: ', np.around(reg.betas[-1], 4)) lambda: [0.2954] """
[docs] def __init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=0.00001, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) self.step1c = step1c y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant,name_x,warn = USER.check_constant(x,name_x,just_rem=True) set_warn(self,warn) name_x = USER.set_name_x(name_x, x_constant, constant=True) self.name_x_r = USER.set_name_x(name_x, x_constant) self.name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend( USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x_constant, yend=yend, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, n, x_constant.shape[1]) self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if regime_err_sep == False: raise Exception("For spatial combo models, if spatial lag is set by regimes (regime_lag_sep=True), spatial error must also be set by regimes (regime_err_sep=True).") add_lag = [w_lags, lag_q] else: cols2regi += [False] add_lag = False if regime_err_sep == True: raise Exception("For spatial combo models, if spatial error is set by regimes (regime_err_sep=True), all coefficients including lambda (regime_lag_sep=True) must be set by regimes.") yend, q = set_endog(y, x_constant, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(self.name_y)) GM_Endog_Error_Het_Regimes.__init__(self, y=y, x=x_constant, yend=yend, q=q, regimes=regimes, w=w, constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep, max_iter=max_iter, epsilon=epsilon, step1c=step1c, inv_method=inv_method, cores=cores, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, name_regimes=name_regimes, summ=False, add_lag=add_lag) if regime_err_sep != True: self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = UTILS.sp_att(w, self.y, self.predy, yend[:, -1].reshape(self.n, 1), self.rho) UTILS.set_warn(self, warn) self.regime_lag_sep = regime_lag_sep self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET) - REGIMES" SUMMARY.GM_Combo_Het(reg=self, w=w, vm=vm, regimes=True)
def _work_error(y, x, regi_ids, r, w, max_iter, epsilon, step1c, name_ds, name_y, name_x, name_w, name_regimes): w_r, warn = REGI.w_regime(w, regi_ids[r], r, transform=True) y_r = y[regi_ids[r]] x_r = x[regi_ids[r]] model = BaseGM_Error_Het( y_r, x_r, w_r.sparse, max_iter=max_iter, epsilon=epsilon, step1c=step1c) set_warn(model, warn) model.w = w_r model.title = "SPATIALLY WEIGHTED LEAST SQUARES ESTIMATION (HET) - REGIME %s" % r model.name_ds = name_ds model.name_y = '%s_%s' % (str(r), name_y) model.name_x = ['%s_%s' % (str(r), i) for i in name_x] model.name_w = name_w model.name_regimes = name_regimes return model def _work_endog_error(y, x, yend, q, regi_ids, r, w, max_iter, epsilon, step1c, inv_method, name_ds, name_y, name_x, name_yend, name_q, name_w, name_regimes, add_lag): w_r, warn = REGI.w_regime(w, regi_ids[r], r, transform=True) y_r = y[regi_ids[r]] x_r = x[regi_ids[r]] if yend is not None: yend_r = yend[regi_ids[r]] q_r = q[regi_ids[r]] else: yend_r, q_r = None, None if add_lag != False: yend_r, q_r = set_endog( y_r, x_r[:,1:], w_r, yend_r, q_r, add_lag[0], add_lag[1]) model = BaseGM_Endog_Error_Het(y_r, x_r, yend_r, q_r, w_r.sparse, max_iter=max_iter, epsilon=epsilon, step1c=step1c, inv_method=inv_method) set_warn(model, warn) if add_lag != False: model.rho = model.betas[-2] model.predy_e, model.e_pred, warn = sp_att(w_r, model.y, model.predy, model.yend[:, -1].reshape(model.n, 1), model.rho) set_warn(model, warn) model.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET) - REGIME %s" % r model.name_ds = name_ds model.name_y = '%s_%s' % (str(r), name_y) model.name_x = ['%s_%s' % (str(r), i) for i in name_x] model.name_yend = ['%s_%s' % (str(r), i) for i in name_yend] model.name_z = model.name_x + model.name_yend + ['lambda'] model.name_q = ['%s_%s' % (str(r), i) for i in name_q] model.name_h = model.name_x + model.name_q model.name_w = name_w model.name_regimes = name_regimes return model def _test(): import doctest start_suppress = np.get_printoptions()['suppress'] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) if __name__ == '__main__': _test()