Source code for spreg.error_sp_hom

'''
Hom family of models based on: :cite:`Drukker2013` 
Following: :cite:`Anselin2011`

'''

__author__ = "Luc Anselin luc.anselin@asu.edu, Daniel Arribas-Bel darribas@asu.edu"

from scipy import sparse as SP
import numpy as np
from numpy import linalg as la
from . import ols as OLS
from libpysal.weights.spatial_lag import lag_spatial
from .utils import power_expansion, set_endog, iter_msg, sp_att
from .utils import get_A1_hom, get_A2_hom, get_A1_het, optim_moments
from .utils import get_spFilter, get_lags, _moments2eqs
from .utils import spdot, RegressionPropsY, set_warn
from . import twosls as TSLS
from . import user_output as USER
from . import summary_output as SUMMARY

__all__ = ["GM_Error_Hom", "GM_Endog_Error_Hom", "GM_Combo_Hom"]


class BaseGM_Error_Hom(RegressionPropsY):

    '''
    GMM method for a spatial error model with homoskedasticity (note: no
    consistency checks, diagnostics or constant added); based on 
    Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`.

    Parameters
    ----------
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, excluding the constant
    w            : Sparse matrix
                   Spatial weights sparse matrix   
    max_iter     : int
                   Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`.
                   Note: epsilon provides an additional stop condition.
    epsilon      : float
                   Minimum change in lambda required to stop iterations of
                   steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides
                   an additional stop condition.
    A1           : string
                   If A1='het', then the matrix A1 is defined as in :cite:`Arraiz2010`.
                   If A1='hom', then as in :cite:`Anselin2011` (default).  If
                   A1='hom_sc' (default), then as in :cite:`Drukker2013`
                   and :cite:`Drukker:2013aa`.

    Attributes
    ----------
    betas        : array
                   kx1 array of estimated coefficients
    u            : array
                   nx1 array of residuals
    e_filtered   : array
                   nx1 array of spatially filtered residuals
    predy        : array
                   nx1 array of predicted y values
    n            : integer
                   Number of observations
    k            : integer
                   Number of variables for which coefficients are estimated
                   (including the constant)
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, including the constant
    iter_stop    : string
                   Stop criterion reached during iteration of steps 2a and 2b
                   from :cite:`Arraiz2010`.
    iteration    : integer
                   Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`.
    mean_y       : float
                   Mean of dependent variable
    std_y        : float
                   Standard deviation of dependent variable
    vm           : array
                   Variance covariance matrix (kxk)
    sig2         : float
                   Sigma squared used in computations
    xtx          : float
                   :math:`X'X`

    Examples
    --------
    >>> import numpy as np
    >>> import libpysal
    >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')
    >>> y = np.array(db.by_col("HOVAL"))
    >>> y = np.reshape(y, (49,1))
    >>> X = []
    >>> X.append(db.by_col("INC"))
    >>> X.append(db.by_col("CRIME"))
    >>> X = np.array(X).T
    >>> X = np.hstack((np.ones(y.shape),X))
    >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))
    >>> w.transform = 'r'

    Model commands

    >>> reg = BaseGM_Error_Hom(y, X, w=w.sparse, A1='hom_sc')
    >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4))
    [[47.9479 12.3021]
     [ 0.7063  0.4967]
     [-0.556   0.179 ]
     [ 0.4129  0.1835]]
    >>> print(np.around(reg.vm, 4)) #doctest: +SKIP
    [[  1.51340700e+02  -5.29060000e+00  -1.85650000e+00  -2.40000000e-03]
     [ -5.29060000e+00   2.46700000e-01   5.14000000e-02   3.00000000e-04]
     [ -1.85650000e+00   5.14000000e-02   3.21000000e-02  -1.00000000e-04]
     [ -2.40000000e-03   3.00000000e-04  -1.00000000e-04   3.37000000e-02]]
    '''

    def __init__(self, y, x, w,
                 max_iter=1, epsilon=0.00001, A1='hom_sc'):
        if A1 == 'hom':
            wA1 = get_A1_hom(w)
        elif A1 == 'hom_sc':
            wA1 = get_A1_hom(w, scalarKP=True)
        elif A1 == 'het':
            wA1 = get_A1_het(w)

        wA2 = get_A2_hom(w)

        # 1a. OLS --> \tilde{\delta}
        ols = OLS.BaseOLS(y=y, x=x)
        self.x, self.y, self.n, self.k, self.xtx = ols.x, ols.y, ols.n, ols.k, ols.xtx

        # 1b. GM --> \tilde{\rho}
        moments = moments_hom(w, wA1, wA2, ols.u)
        lambda1 = optim_moments(moments)
        lambda_old = lambda1

        self.iteration, eps = 0, 1
        while self.iteration < max_iter and eps > epsilon:
            # 2a. SWLS --> \hat{\delta}
            x_s = get_spFilter(w, lambda_old, self.x)
            y_s = get_spFilter(w, lambda_old, self.y)
            ols_s = OLS.BaseOLS(y=y_s, x=x_s)
            self.predy = spdot(self.x, ols_s.betas)
            self.u = self.y - self.predy

            # 2b. GM 2nd iteration --> \hat{\rho}
            moments = moments_hom(w, wA1, wA2, self.u)
            psi = get_vc_hom(w, wA1, wA2, self, lambda_old)[0]
            lambda2 = optim_moments(moments, psi)
            eps = abs(lambda2 - lambda_old)
            lambda_old = lambda2
            self.iteration += 1

        self.iter_stop = iter_msg(self.iteration, max_iter)

        # Output
        self.betas = np.vstack((ols_s.betas, lambda2))
        self.vm, self.sig2 = get_omega_hom_ols(
            w, wA1, wA2, self, lambda2, moments[0])
        self.e_filtered = self.u - lambda2 * w * self.u
        self._cache = {}


[docs]class GM_Error_Hom(BaseGM_Error_Hom): ''' GMM method for a spatial error model with homoskedasticity, with results and diagnostics; based on Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant w : pysal W object Spatial weights object max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. A1 : string If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in :cite:`Anselin2011`. If A1='hom_sc' (default), then as in :cite:`Drukker2013` and :cite:`Drukker:2013aa`. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from Arraiz et al. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable pr2 : float Pseudo R squared (squared correlation between y and ypred) vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float xtx : float :math:`X'X` name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("CRIME")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Error_Hom(y, X, w=w, A1='hom_sc', name_y='home value', name_x=['income', 'crime'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. This is why you obtain as many coefficient estimates as standard errors, which you calculate taking the square root of the diagonal of the variance-covariance matrix of the parameters: >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)) [[47.9479 12.3021] [ 0.7063 0.4967] [-0.556 0.179 ] [ 0.4129 0.1835]] '''
[docs] def __init__(self, y, x, w, max_iter=1, epsilon=0.00001, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant,name_x,warn = USER.check_constant(x,name_x) set_warn(self, warn) BaseGM_Error_Hom.__init__(self, y=y, x=x_constant, w=w.sparse, A1=A1, max_iter=max_iter, epsilon=epsilon) self.title = "SPATIALLY WEIGHTED LEAST SQUARES (HOM)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_x.append('lambda') self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Error_Hom(reg=self, w=w, vm=vm)
class BaseGM_Endog_Error_Hom(RegressionPropsY): ''' GMM method for a spatial error model with homoskedasticity and endogenous variables (note: no consistency checks, diagnostics or constant added); based on Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : Sparse matrix Spatial weights sparse matrix max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. A1 : string If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in :cite:`Anselin2011`. If A1='hom_sc' (default), then as in :cite:`Drukker2013` and :cite:`Drukker:2013aa`. Attributes ---------- betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations hth : float H'H Examples -------- >>> import numpy as np >>> import libpysal >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> X = np.hstack((np.ones(y.shape),X)) >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) >>> w.transform = 'r' >>> reg = BaseGM_Endog_Error_Hom(y, X, yd, q, w=w.sparse, A1='hom_sc') >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)) [[55.3658 23.496 ] [ 0.4643 0.7382] [-0.669 0.3943] [ 0.4321 0.1927]] ''' def __init__(self, y, x, yend, q, w, max_iter=1, epsilon=0.00001, A1='hom_sc'): if A1 == 'hom': wA1 = get_A1_hom(w) elif A1 == 'hom_sc': wA1 = get_A1_hom(w, scalarKP=True) elif A1 == 'het': wA1 = get_A1_het(w) wA2 = get_A2_hom(w) # 1a. S2SLS --> \tilde{\delta} tsls = TSLS.BaseTSLS(y=y, x=x, yend=yend, q=q) self.x, self.z, self.h, self.y, self.hth = tsls.x, tsls.z, tsls.h, tsls.y, tsls.hth self.yend, self.q, self.n, self.k = tsls.yend, tsls.q, tsls.n, tsls.k # 1b. GM --> \tilde{\rho} moments = moments_hom(w, wA1, wA2, tsls.u) lambda1 = optim_moments(moments) lambda_old = lambda1 self.iteration, eps = 0, 1 while self.iteration < max_iter and eps > epsilon: # 2a. GS2SLS --> \hat{\delta} x_s = get_spFilter(w, lambda_old, self.x) y_s = get_spFilter(w, lambda_old, self.y) yend_s = get_spFilter(w, lambda_old, self.yend) tsls_s = TSLS.BaseTSLS(y=y_s, x=x_s, yend=yend_s, h=self.h) self.predy = spdot(self.z, tsls_s.betas) self.u = self.y - self.predy # 2b. GM 2nd iteration --> \hat{\rho} moments = moments_hom(w, wA1, wA2, self.u) psi = get_vc_hom(w, wA1, wA2, self, lambda_old, tsls_s.z)[0] lambda2 = optim_moments(moments, psi) eps = abs(lambda2 - lambda_old) lambda_old = lambda2 self.iteration += 1 self.iter_stop = iter_msg(self.iteration, max_iter) # Output self.betas = np.vstack((tsls_s.betas, lambda2)) self.vm, self.sig2 = get_omega_hom( w, wA1, wA2, self, lambda2, moments[0]) self.e_filtered = self.u - lambda2 * w * self.u self._cache = {}
[docs]class GM_Endog_Error_Hom(BaseGM_Endog_Error_Hom): ''' GMM method for a spatial error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. A1 : string If A1='het', then the matrix A1 is defined as in :cite:`Arraiz2010`. If A1='hom', then as in :cite:`Anselin2011`. If A1='hom_sc' (default), then as in :cite:`Drukker2013` and :cite:`Drukker:2013aa`. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used hth : float :math:`H'H` Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x). >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'. >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix: >>> print(reg.name_z) ['CONSTANT', 'inc', 'crime', 'lambda'] >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)) [[55.3658 23.496 ] [ 0.4643 0.7382] [-0.669 0.3943] [ 0.4321 0.1927]] '''
[docs] def __init__(self, y, x, yend, q, w, max_iter=1, epsilon=0.00001, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant,name_x,warn = USER.check_constant(x,name_x) set_warn(self, warn) BaseGM_Endog_Error_Hom.__init__( self, y=y, x=x_constant, w=w.sparse, yend=yend, q=q, A1=A1, max_iter=max_iter, epsilon=epsilon) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') # listing lambda last self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Endog_Error_Hom(reg=self, w=w, vm=vm)
class BaseGM_Combo_Hom(BaseGM_Endog_Error_Hom): ''' GMM method for a spatial lag and error model with homoskedasticity and endogenous variables (note: no consistency checks, diagnostics or constant added); based on Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : Sparse matrix Spatial weights sparse matrix w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. A1 : string If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in :cite:`Anselin2011`. If A1='hom_sc' (default), then as in :cite:`Drukker2013` and :cite:`Drukker:2013aa`. Attributes ---------- betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations hth : float :math:`H'H` Examples -------- >>> import numpy as np >>> import libpysal >>> import spreg >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) >>> w.transform = 'r' >>> w_lags = 1 >>> yd2, q2 = spreg.set_endog(y, X, w, None, None, w_lags, True) >>> X = np.hstack((np.ones(y.shape),X)) Example only with spatial lag >>> reg = spreg.error_sp_hom.BaseGM_Combo_Hom(y, X, yend=yd2, q=q2, w=w.sparse, A1='hom_sc') >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)) [[10.1254 15.2871] [ 1.5683 0.4407] [ 0.1513 0.4048] [ 0.2103 0.4226]] Example with both spatial lag and other endogenous variables >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T >>> yd2, q2 = spreg.set_endog(y, X, w, yd, q, w_lags, True) >>> X = np.hstack((np.ones(y.shape),X)) >>> reg = spreg.error_sp_hom.BaseGM_Combo_Hom(y, X, yd2, q2, w=w.sparse, A1='hom_sc') >>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']]) >>> print(np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5)))) [['CONSTANT' '111.77057' '67.75191'] ['inc' '-0.30974' '1.16656'] ['crime' '-1.36043' '0.6841'] ['W_hoval' '-0.52908' '0.84428'] ['lambda' '0.60116' '0.18605']] ''' def __init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=0.00001, A1='hom_sc'): BaseGM_Endog_Error_Hom.__init__( self, y=y, x=x, w=w, yend=yend, q=q, A1=A1, max_iter=max_iter, epsilon=epsilon)
[docs]class GM_Combo_Hom(BaseGM_Combo_Hom): ''' GMM method for a spatial lag and error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) :cite:`Drukker2013`, following Anselin (2011) :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object (always necessary) w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. A1 : string If A1='het', then the matrix A1 is defined as in :cite:`Arraiz2010`. If A1='hom', then as in :cite:`Anselin2011`. If A1='hom_sc' (default), then as in :cite:`Drukker2013` and :cite:`Drukker:2013aa`. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals e_pred : array nx1 array of residuals (using reduced form) predy : array nx1 array of predicted y values predy_e : array nx1 array of predicted y values (using reduced form) n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) sig2 : float Sigma squared used in computations (based on filtered residuals) std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used hth : float :math:`H'H` Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' Example only with spatial lag The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> from spreg import GM_Combo_Hom >>> reg = GM_Combo_Hom(y, X, w=w, A1='hom_sc', name_x=['inc'],\ name_y='hoval', name_yend=['crime'], name_q=['discbd'],\ name_ds='columbus') >>> print(np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)) [[10.1254 15.2871] [ 1.5683 0.4407] [ 0.1513 0.4048] [ 0.2103 0.4226]] This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables: >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T And then we can run and explore the model analogously to the previous combo: >>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc', \ name_ds='columbus') >>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']]) >>> print(np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5)))) [['CONSTANT' '111.77057' '67.75191'] ['inc' '-0.30974' '1.16656'] ['crime' '-1.36043' '0.6841'] ['W_hoval' '-0.52908' '0.84428'] ['lambda' '0.60116' '0.18605']] '''
[docs] def __init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=0.00001, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant,name_x,warn = USER.check_constant(x,name_x) set_warn(self, warn) yend2, q2 = set_endog(y, x_constant[:,1:], w, yend, q, w_lags, lag_q) BaseGM_Combo_Hom.__init__( self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2, w_lags=w_lags, A1=A1, lag_q=lag_q, max_iter=max_iter, epsilon=epsilon) self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = sp_att(w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HOM)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') # listing lambda last self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo_Hom(reg=self, w=w, vm=vm)
# Functions def moments_hom(w, wA1, wA2, u): ''' Compute G and g matrices for the spatial error model with homoscedasticity as in Anselin :cite:`Anselin2011` (2011). Parameters ---------- w : Sparse matrix Spatial weights sparse matrix u : array Residuals. nx1 array assumed to be aligned with w Attributes ---------- moments : list List of two arrays corresponding to the matrices 'G' and 'g', respectively. ''' n = w.shape[0] A1u = wA1 * u A2u = wA2 * u wu = w * u g1 = np.dot(u.T, A1u) g2 = np.dot(u.T, A2u) g = np.array([[g1][0][0], [g2][0][0]]) / n G11 = 2 * np.dot(wu.T * wA1, u) G12 = -np.dot(wu.T * wA1, wu) G21 = 2 * np.dot(wu.T * wA2, u) G22 = -np.dot(wu.T * wA2, wu) G = np.array([[G11[0][0], G12[0][0]], [G21[0][0], G22[0][0]]]) / n return [G, g] def get_vc_hom(w, wA1, wA2, reg, lambdapar, z_s=None, for_omegaOLS=False): ''' VC matrix \psi of Spatial error with homoscedasticity. As in Anselin (2011) :cite:`Anselin2011` (p. 20) ... Parameters ---------- w : Sparse matrix Spatial weights sparse matrix reg : reg Regression object lambdapar : float Spatial parameter estimated in previous step of the procedure z_s : array optional argument for spatially filtered Z (to be passed only if endogenous variables are present) for_omegaOLS : boolean If True (default=False), it also returns P, needed only in the computation of Omega Returns ------- psi : array 2x2 VC matrix a1 : array nx1 vector a1. If z_s=None, a1 = 0. a2 : array nx1 vector a2. If z_s=None, a2 = 0. p : array P matrix. If z_s=None or for_omegaOLS=False, p=0. ''' u_s = get_spFilter(w, lambdapar, reg.u) n = float(w.shape[0]) sig2 = np.dot(u_s.T, u_s) / n mu3 = np.sum(u_s ** 3) / n mu4 = np.sum(u_s ** 4) / n tr11 = wA1 * wA1 tr11 = np.sum(tr11.diagonal()) tr12 = wA1 * (wA2 * 2) tr12 = np.sum(tr12.diagonal()) tr22 = wA2 * wA2 * 2 tr22 = np.sum(tr22.diagonal()) vecd1 = np.array([wA1.diagonal()]).T psi11 = 2 * sig2 ** 2 * tr11 + \ (mu4 - 3 * sig2 ** 2) * np.dot(vecd1.T, vecd1) psi12 = sig2 ** 2 * tr12 psi22 = sig2 ** 2 * tr22 a1, a2, p = 0., 0., 0. if for_omegaOLS: x_s = get_spFilter(w, lambdapar, reg.x) p = la.inv(spdot(x_s.T, x_s) / n) if issubclass(type(z_s), np.ndarray) or \ issubclass(type(z_s), SP.csr.csr_matrix) or \ issubclass(type(z_s), SP.csc.csc_matrix): alpha1 = (-2 / n) * spdot(z_s.T, wA1 * u_s) alpha2 = (-2 / n) * spdot(z_s.T, wA2 * u_s) hth = spdot(reg.h.T, reg.h) hthni = la.inv(hth / n) htzsn = spdot(reg.h.T, z_s) / n p = spdot(hthni, htzsn) p = spdot(p, la.inv(spdot(htzsn.T, p))) hp = spdot(reg.h, p) a1 = spdot(hp, alpha1) a2 = spdot(hp, alpha2) psi11 = psi11 + \ sig2 * spdot(a1.T, a1) + \ 2 * mu3 * spdot(a1.T, vecd1) psi12 = psi12 + \ sig2 * spdot(a1.T, a2) + \ mu3 * spdot(a2.T, vecd1) # 3rd term=0 psi22 = psi22 + \ sig2 * spdot(a2.T, a2) # 3rd&4th terms=0 bc vecd2=0 psi = np.array( [[psi11[0][0], psi12[0][0]], [psi12[0][0], psi22[0][0]]]) / n return psi, a1, a2, p def get_omega_hom(w, wA1, wA2, reg, lamb, G): ''' Omega VC matrix for Hom models with endogenous variables computed as in Anselin (2011) :cite:`Anselin2011` (p. 21). ... Parameters ---------- w : Sparse matrix Spatial weights sparse matrix reg : reg Regression object lamb : float Spatial parameter estimated in previous step of the procedure G : array Matrix 'G' of the moment equation Returns ------- omega : array Omega matrix of VC of the model ''' n = float(w.shape[0]) z_s = get_spFilter(w, lamb, reg.z) u_s = get_spFilter(w, lamb, reg.u) sig2 = np.dot(u_s.T, u_s) / n mu3 = np.sum(u_s ** 3) / n vecdA1 = np.array([wA1.diagonal()]).T psi, a1, a2, p = get_vc_hom(w, wA1, wA2, reg, lamb, z_s) j = np.dot(G, np.array([[1.], [2 * lamb]])) psii = la.inv(psi) t2 = spdot(reg.h.T, np.hstack((a1, a2))) psiDL = (mu3 * spdot(reg.h.T, np.hstack((vecdA1, np.zeros((int(n), 1))))) + sig2 * spdot(reg.h.T, np.hstack((a1, a2)))) / n oDD = spdot(la.inv(spdot(reg.h.T, reg.h)), spdot(reg.h.T, z_s)) oDD = sig2 * la.inv(spdot(z_s.T, spdot(reg.h, oDD))) oLL = la.inv(spdot(j.T, spdot(psii, j))) / n oDL = spdot(spdot(spdot(p.T, psiDL), spdot(psii, j)), oLL) o_upper = np.hstack((oDD, oDL)) o_lower = np.hstack((oDL.T, oLL)) return np.vstack((o_upper, o_lower)), float(sig2) def get_omega_hom_ols(w, wA1, wA2, reg, lamb, G): ''' Omega VC matrix for Hom models without endogenous variables (OLS) computed as in Anselin (2011) :cite:`Anselin2011`. ... Parameters ---------- w : Sparse matrix Spatial weights sparse matrix reg : reg Regression object lamb : float Spatial parameter estimated in previous step of the procedure G : array Matrix 'G' of the moment equation Returns ------- omega : array Omega matrix of VC of the model ''' n = float(w.shape[0]) x_s = get_spFilter(w, lamb, reg.x) u_s = get_spFilter(w, lamb, reg.u) sig2 = np.dot(u_s.T, u_s) / n vecdA1 = np.array([wA1.diagonal()]).T psi, a1, a2, p = get_vc_hom(w, wA1, wA2, reg, lamb, for_omegaOLS=True) j = np.dot(G, np.array([[1.], [2 * lamb]])) psii = la.inv(psi) oDD = sig2 * la.inv(spdot(x_s.T, x_s)) oLL = la.inv(spdot(j.T, spdot(psii, j))) / n #oDL = np.zeros((oDD.shape[0], oLL.shape[1])) mu3 = np.sum(u_s ** 3) / n psiDL = (mu3 * spdot(reg.x.T, np.hstack((vecdA1, np.zeros((int(n), 1)))))) / n oDL = spdot(spdot(spdot(p.T, psiDL), spdot(psii, j)), oLL) o_upper = np.hstack((oDD, oDL)) o_lower = np.hstack((oDL.T, oLL)) return np.vstack((o_upper, o_lower)), float(sig2) def _test(): import doctest start_suppress = np.get_printoptions()['suppress'] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) if __name__ == '__main__': _test()