Source code for spreg.twosls_sp

'''
Spatial Two Stages Least Squares
'''

__author__ = "Luc Anselin luc.anselin@asu.edu, David C. Folch david.folch@asu.edu"

import numpy as np
from . import twosls as TSLS
from . import user_output as USER
from . import summary_output as SUMMARY
from .utils import set_endog, sp_att, set_warn

__all__ = ["GM_Lag"]


class BaseGM_Lag(TSLS.BaseTSLS):

    """
    Spatial two stage least squares (S2SLS) (note: no consistency checks,
    diagnostics or constant added); Anselin (1988) [Anselin1988]_

    Parameters
    ----------
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable; assumes the constant is
                   in column 0.
    yend         : array
                   Two dimensional array with n rows and one column for each
                   endogenous variable
    q            : array
                   Two dimensional array with n rows and one column for each
                   external exogenous variable to use as instruments (note: 
                   this should not contain any variables from x); cannot be
                   used in combination with h
    w            : Pysal weights matrix
                   Spatial weights matrix 
    w_lags       : integer
                   Orders of W to include as instruments for the spatially
                   lagged dependent variable. For example, w_lags=1, then
                   instruments are WX; if w_lags=2, then WX, WWX; and so on.
    lag_q        : boolean
                   If True, then include spatial lags of the additional 
                   instruments (q).
    robust       : string
                   If 'white', then a White consistent estimator of the
                   variance-covariance matrix is given.  If 'hac', then a
                   HAC consistent estimator of the variance-covariance
                   matrix is given. Default set to None. 
    gwk          : pysal W object
                   Kernel spatial weights needed for HAC estimation. Note:
                   matrix must have ones along the main diagonal.
    sig2n_k      : boolean
                   If True, then use n-k to estimate sigma^2. If False, use n.


    Attributes
    ----------
    betas        : array
                   kx1 array of estimated coefficients
    u            : array
                   nx1 array of residuals
    predy        : array
                   nx1 array of predicted y values
    n            : integer
                   Number of observations
    k            : integer
                   Number of variables for which coefficients are estimated
                   (including the constant)
    kstar        : integer
                   Number of endogenous variables. 
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, including the constant
    yend         : array
                   Two dimensional array with n rows and one column for each
                   endogenous variable
    q            : array
                   Two dimensional array with n rows and one column for each
                   external exogenous variable used as instruments 
    z            : array
                   nxk array of variables (combination of x and yend)
    h            : array
                   nxl array of instruments (combination of x and q)
    mean_y       : float
                   Mean of dependent variable
    std_y        : float
                   Standard deviation of dependent variable
    vm           : array
                   Variance covariance matrix (kxk)
    utu          : float
                   Sum of squared residuals
    sig2         : float
                   Sigma squared used in computations
    sig2n        : float
                   Sigma squared (computed with n in the denominator)
    sig2n_k      : float
                   Sigma squared (computed with n-k in the denominator)
    hth          : float
                   H'H
    hthi         : float
                   (H'H)^-1
    varb         : array
                   (Z'H (H'H)^-1 H'Z)^-1
    zthhthi      : array
                   Z'H(H'H)^-1
    pfora1a2     : array
                   n(zthhthi)'varb

    Examples
    --------

    >>> import numpy as np
    >>> import libpysal
    >>> import spreg
    >>> np.set_printoptions(suppress=True) #prevent scientific format
    >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))
    >>> w.transform = 'r'
    >>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')
    >>> y = np.array(db.by_col("HOVAL"))
    >>> y = np.reshape(y, (49,1))
    >>> # no non-spatial endogenous variables
    >>> X = []
    >>> X.append(db.by_col("INC"))
    >>> X.append(db.by_col("CRIME"))
    >>> X = np.array(X).T
    >>> X = np.hstack((np.ones(y.shape),X))
    >>> reg = spreg.twosls_sp.BaseGM_Lag(y, X, w=w, w_lags=2)
    >>> reg.betas
    array([[45.30170561],
           [ 0.62088862],
           [-0.48072345],
           [ 0.02836221]])
    >>> spreg.se_betas(reg)
    array([17.91278862,  0.52486082,  0.1822815 ,  0.31740089])
    >>> reg = spreg.twosls_sp.BaseGM_Lag(y, X, w=w, w_lags=2, robust='white')
    >>> reg.betas
    array([[45.30170561],
           [ 0.62088862],
           [-0.48072345],
           [ 0.02836221]])
    >>> spreg.se_betas(reg)
    array([20.47077481,  0.50613931,  0.20138425,  0.38028295])
    >>> # instrument for HOVAL with DISCBD
    >>> X = np.array(db.by_col("INC"))
    >>> X = np.reshape(X, (49,1))
    >>> yd = np.array(db.by_col("CRIME"))
    >>> yd = np.reshape(yd, (49,1))
    >>> q = np.array(db.by_col("DISCBD"))
    >>> q = np.reshape(q, (49,1))
    >>> X = np.hstack((np.ones(y.shape),X))
    >>> reg = spreg.twosls_sp.BaseGM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2)
    >>> reg.betas
    array([[100.79359082],
           [ -0.50215501],
           [ -1.14881711],
           [ -0.38235022]])
    >>> spreg.se_betas(reg)
    array([53.0829123 ,  1.02511494,  0.57589064,  0.59891744])

    """

    def __init__(self, y, x, yend=None, q=None,
                 w=None, w_lags=1, lag_q=True,
                 robust=None, gwk=None, sig2n_k=False):

        yend2, q2 = set_endog(y, x[:,1:], w, yend, q, w_lags, lag_q) #assumes constant in first column
        TSLS.BaseTSLS.__init__(self, y=y, x=x, yend=yend2, q=q2,
                               robust=robust, gwk=gwk, sig2n_k=sig2n_k)


[docs]class GM_Lag(BaseGM_Lag): """ Spatial two stage least squares (S2SLS) with results and diagnostics; Anselin (1988) :cite:`Anselin1988` Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x); cannot be used in combination with h w : pysal W object Spatial weights object w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). robust : string If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None. gwk : pysal W object Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal. sig2n_k : boolean If True, then use n-k to estimate sigma^2. If False, use n. spat_diag : boolean If True, then compute Anselin-Kelejian test vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_gwk : string Name of kernel weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_pred : array nx1 array of residuals (using reduced form) predy : array nx1 array of predicted y values predy_e : array nx1 array of predicted y values (using reduced form) n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) kstar : integer Number of endogenous variables. y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) robust : string Adjustment for robust standard errors mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) utu : float Sum of squared residuals sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float ak_test : tuple Anselin-Kelejian test; tuple contains the pair (statistic, p-value) name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_gwk : string Name of kernel weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used sig2n : float Sigma squared (computed with n in the denominator) sig2n_k : float Sigma squared (computed with n-k in the denominator) hth : float :math:`H'H` hthi : float :math:`(H'H)^{-1}` varb : array :math:`(Z'H (H'H)^{-1} H'Z)^{-1}` zthhthi : array :math:`Z'H(H'H)^{-1}` pfora1a2 : array n(zthhthi)'varb Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. Since we will need some tests for our model, we also import the diagnostics module. >>> import numpy as np >>> import libpysal >>> import spreg Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r') Extract the HOVAL column (home value) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("CRIME")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' This class runs a lag model, which means that includes the spatial lag of the dependent variable on the right-hand side of the equation. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. The default most basic model to be run would be: >>> from spreg import GM_Lag >>> np.set_printoptions(suppress=True) #prevent scientific format >>> reg=GM_Lag(y, X, w=w, w_lags=2, name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus') >>> reg.betas array([[45.30170561], [ 0.62088862], [-0.48072345], [ 0.02836221]]) Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module: >>> spreg.se_betas(reg) array([17.91278862, 0.52486082, 0.1822815 , 0.31740089]) But we can also run models that incorporates corrected standard errors following the White procedure. For that, we will have to include the optional parameter ``robust='white'``: >>> reg=GM_Lag(y, X, w=w, w_lags=2, robust='white', name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus') >>> reg.betas array([[45.30170561], [ 0.62088862], [-0.48072345], [ 0.02836221]]) And we can access the standard errors from the model object: >>> reg.std_err array([20.47077481, 0.50613931, 0.20138425, 0.38028295]) The class is flexible enough to accomodate a spatial lag model that, besides the spatial lag of the dependent variable, includes other non-spatial endogenous regressors. As an example, we will assume that CRIME is actually endogenous and we decide to instrument for it with DISCBD (distance to the CBD). We reload the X including INC only and define CRIME as endogenous and DISCBD as instrument: >>> X = np.array(db.by_col("INC")) >>> X = np.reshape(X, (49,1)) >>> yd = np.array(db.by_col("CRIME")) >>> yd = np.reshape(yd, (49,1)) >>> q = np.array(db.by_col("DISCBD")) >>> q = np.reshape(q, (49,1)) And we can run the model again: >>> reg=GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus') >>> reg.betas array([[100.79359082], [ -0.50215501], [ -1.14881711], [ -0.38235022]]) Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module: >>> spreg.se_betas(reg) array([53.0829123 , 1.02511494, 0.57589064, 0.59891744]) """
[docs] def __init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) x_constant,name_x,warn = USER.check_constant(x,name_x) set_warn(self, warn) BaseGM_Lag.__init__( self, y=y, x=x_constant, w=w, yend=yend, q=q, w_lags=w_lags, robust=robust, gwk=gwk, lag_q=lag_q, sig2n_k=sig2n_k) self.rho = self.betas[-1] self.predy_e, self.e_pred, warn = sp_att(w, self.y, self.predy, self.yend[:, -1].reshape(self.n, 1), self.rho) set_warn(self, warn) self.title = "SPATIAL TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def _test(): import doctest start_suppress = np.get_printoptions()['suppress'] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) if __name__ == '__main__': _test() import numpy as np import libpysal db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"), 'r') y_var = 'CRIME' y = np.array([db.by_col(y_var)]).reshape(49, 1) x_var = ['INC'] x = np.array([db.by_col(name) for name in x_var]).T yd_var = ['HOVAL'] yd = np.array([db.by_col(name) for name in yd_var]).T q_var = ['DISCBD'] q = np.array([db.by_col(name) for name in q_var]).T w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) w.transform = 'r' model = GM_Lag( y, x, yd, q, w=w, spat_diag=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_ds='columbus', name_w='columbus.gal') print(model.summary)